Indian Standard

IMPROVING EARTHQUAKE RESISTANCE OF EARTHEN BUILDINGS — GUIDELINES
Indian Standard

IMPROVING EARTHQUAKE RESISTANCE OF EARTHEN BUILDINGS — GUIDELINES

UDC 699.841 (026) : 728-61

© BIS 1993

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

October 1993

Price Group 7
IMPROVING EARTHQUAKE RESISTANCE OF EARTHEN BUILDINGS—GUIDELINES

1 Scope
1.1 The guidelines covered in this standard deal with the design and construction aspects for improving earthquake resistance of earthen houses, without the use of stabilizers, such as cement, lime, asphalt, admixtures, etc.

1.2 The provisions of this standard are applicable for seismic zones III, IV, and V. No special provisions are considered necessary in zones I and II (see IS 1893:1984 for seismic zones).

Notes
1. Earthen buildings are inherently weak against water and earthquakes, and should preferably be avoided in flood prone, high rainfall areas and seismic zones IV and V.
2. Attention is hereby drawn to the fact that earthquake construction as dealt with hereinafter will neither ensure quality as engineered construction nor totally free from collapse in severe seismic intensities VII and IX on MP77 scale. However, inclusion of special design and construction features as recommended in this standard will raise their weather and seismic resistance appreciably reducing the chances of collapse even in such seismic intensities.

2 References
The following Indian Standards are the necessary adjuncts to this standard:
IS No. 833:1993 Code of practice for design of structural timber in building (fourth revision)
803:1984 Criteria for earthquake resistant design of structures
2700 Methods of test for soils: Part 4 Determination of water content—density relation using light compaction (second revision)

3 Terminology
3.0 For the purposes of this standard, the following definitions shall apply:
3.1 Earthen houses will include those constructed using clay mud lumps, unburnt clay brick or block (adobe), compacted soil in wood forms, etc., without using stabilizers.
3.2 Adobe
Sun dried clay blocks or clay bricks.

3.3 Box System
A bearing wall structure without a space frame, the horizontal forces being resisted by the walls acting as shear walls.

3.4 Band
A reinforced concrete or reinforced brick or wooden runner provided horizontally in the walls to tie them together and to impart horizontal bending strength in them.

3.5 Seismic Zone and Seismic Coefficient
The seismic zones I to V as classified and the corresponding basic seismic coefficient, as specified in 3.4 of IS 1893:1984.

3.6 Design Seismic Coefficient, η
The value of horizontal seismic coefficient computed taking into account the attenuation system and the importance factor as specified in 3.4.2.3 (a) of IS 1893:1984.

4 General Considerations
4.1 For the safety of earthen houses, appropriate precautions must be taken against the actions of rain and flood waters and earthquakes. Minimum precautions are recommended in this standard.

4.2 Whereas dry clay blocks in hard and strong in compression and shear, water penetration will not make it soft and weak, the reduction in strength could be as high as 60 to 90 percent. Hence, once built, ingress of moisture in the walls must be prevented by the protection, roof projection and use of waterproofing.

4.3 These recommendations are low-cost and do not include the use of stabilizers, which are otherwise costly though effective in increasing the strength and water-resistance of the clay units or walls. Where feasible time-stabilized compacted clay blocks, or cement-stabilized sandy soil blocks may be used with considerable strength.

5 Lightness
Since the earthquake force is a function of mass, the building shall be as light as possible, consistent with structural safety and functional requirements. Roof of buildings should, in particular, be made of light weight type.

5 Height
Experience in intensity areas of VIII has shown the high vulnerability of two-storied houses,

7.2 The quality of construction will improve if the clay-water-straw mixture was allowed to rest for 2 days (minimum 3 days) before use in walls so that thorough dispersion of moisture in clay and decomposition of straw into fibres takes place.

7.3 The area of the lower layer should be moistened well before adding the new layers so as to minimize the horizontal forces at the joints.

8 Block or Adobe Construction
8.1 Suitable soil should be used for making the blocks, by using uniform size of mould, after keeping the soil-water mix for 24 hours. The blocks should be allowed to dry out of the moulds so as to allow for 'shrinkage without developing fissures.

8.2 Block sizes are not standardized yet and various sizes are used in the country and the world. The following sizes of blocks are recommended for making 300 mm thick walls:

- Rectangular: 300 mm x 200 mm x 110 mm (Overlap of about 125 mm)
- Square: 300 mm x 300 mm x 110 mm (Overlap of about 150 mm)

8.2.1 The square type will be better for stronger construction in view of less vertical joints between units and better breaking of vertical joints.

8.3 The mud mortar used to join the blocks together should be the same soil as used in making blocks. However, to make it non-shrinking, straw in the ratio 1:1, by volume, should be mixed. The mixture shall be allowed to rest for 7 days (minimum 3 days) before use. The lower layer of adobe should be moistened before the mortar is laid. Also, the surface of the adobes to be laid should be moistened for a few minutes before the adobe is laid. If the mortar is seen to fissure on drying, some sand could be added to the mixture, as indicated by the fissure control test in 6.2.

8.4 The usual good principles of bonds in masonry should be adopted for construction of adobe walls, that is:
- all courses should be laid level,
- the vertical joints should be broken between the consecutive courses by overlap of adobes and should be fully filled with mortar (see Fig. 3), and
- the transverse joints between walls should be made in such a way that through vertical joint is avoided (see Fig. 3).

9 Rammed Earth Construction
9.1 Rammed earth construction is also known as 'Pise' or 'Tepal' construction in some countries.

9.2 To construct walls, in this method, most soil is covered in long, woven forms of the wall and compacted to achieve the desired density.

- The soil suitable for rammed earth construction will generally have less clay than that used for making adobe. The moisture content should be kept less but close to optimum moisture content.

- The soil should be placed in layers of about 100 mm thickness and fully compacted, then water should be sprinkled on the compacted layer before placing the next layer of 100 mm. The total height of this block achieved this way.
may be kept 500 to 800 mm. Before starting the new block, sufficient water should be poured on the completed layer to ensure its connection with the new layer.

9.4 Higher compaction leads to higher strength but up to a limit only. Compaction should be standardized. The following procedure is recommended:

- 50 strokes per 1,000 cm² of wall area using a wooden mallet of about 8 to 10 kg weight.

9.5 Small amount of straw, in the ratio of not more than one-fourth of the volume of soil-water mixture, may be used in the soil for fissure control.

10 RECOMMENDATIONS FOR SEISMIC AREAS

10.1 Walls

10.1.1 The height of the adobe building should be restricted to one storey plus attic only in seismic zones V and IV and to two storeys in zone III. Important building (1 > 1.5) should not be constructed with earthen walls in seismic zones IV and V and restricted to one storey in seismic zone III.

10.1.2 The length of a wall, between two consecutive walls at right angles to it, should not be greater than 10 times the wall thickness + nor greater than 0.4 h/δ where h is the height of wall (see Fig. 3).

10.1.3 When a longer wall is required, the walls should be strengthened by intermediate vertical buttresses (see Fig. 4).

10.1.4 The height of wall should not be greater than 5 times its thickness (see Fig. 4).

10.1.5 The width of an opening should not be greater than 1.20 m (see Fig. 5).

10.1.6 The distance between an outside corner and the opening should be not less than 1.20 m.

10.1.7 The sum of the widths of openings in a wall should not exceed 33% of the total wall length in seismic zone V and 40% in zones IV and III.

10.1.8 The bearing length (embedded) of lintels on each side of an opening should not be less than 300 mm. For an adequate configuration for an earthen house, see 10.5.

10.1.9 Hand-formed walls could preferably be made tapering upwards keeping the minimum thickness 300 mm at top and increasing it with a rate of 1:12 at bottom (see Fig. 4h).

10.2 House Site

10.2.1 Sites with sandy loose soils, poorly compacted chysa, and fill materials should generally be discarded due to their excessive settlements during seismic vibrations. Also, sites with very high water table should be avoided. These recommendations are particularly important for seismic zones V and IV.

10.2.2 Site shall be above high flood level or the ground shall be raised to this effect.

10.3 Foundation

10.3.1 Width of strip footings of the walls may be kept as follows:

i) One storey on firm — Equal to wall thickness

ii) 1-5 or 2 storeys on — 1-5 times the firm soil wall thickness

iii) One storey on soft soil — 1-5 times the wall thickness

iv) 1-5 or 2 storeys on soft — 3 times the wall soil thickness

10.3.2 The depth of foundation below existing ground level should at least be 400 mm.
10.3.3 The footings should preferably be built by using stone, fired brick, or lime mortar. Alternatively, it may be made in lean cement concrete with sand: gravel: stones as 1:4:6; or without stones as 1:5:10. Lime could be used in place of cement in the ratio: lime: sand: gravel as 1:4:8.

10.3.4 Plinth Masonry

The wall above foundation up to plinth level should preferably be constructed using stone or brick blocks laid in cement or lime mortar. Mortar mix may be used only as a last resort.

The height of plinth should be above the flood water line or a minimum of 300 mm above ground level. It will be preferable to use a waterproofing layer in the form of waterproof mud (see 13.3) or heavy black polyvinyl or polyethylene sheet at the plinth level before starting the construction of superstructure wall. If adobe itself is used for plinth construction, the outside face of plinth should be protected against damage by water by suitable fascias or plaster. A water drain should be made slightly away from the wall to save it from seepage.

10.4 Roof

10.4.1 The roofing structure must be light, well connected and adequately tied to the walls. Trusses are superior to sloping roofs consisting of only rafters or A-frames.

10.4.2 The roof covering should preferably be of light material, like sheeting of any type. Heavy roofs consisting of wood joints and earth topping should be avoided and should not be used in Zones V and IV. Tiled and slate roofs are also heavier and shall be avoided in Zones V and IV.

10.4.3 If adobe is used for roof covering, it should better be made waterproof and fire-resistant by applying waterproof mud plaster (see 13.3).

10.4.4 The roof beams, rafters or trusses should preferably be rested on longitudinal wooden elements for distributing the load on walls.

10.4.5 The slope and the overhanging will depend on local climatic conditions. Roofs subjected to rain and snow, walls protection must be ensured by projecting the roof by about 500 mm beyond the walls (see Fig. 6).

10.4.6 The roof beams or rafters should be located to avoid their position above door or window lintels. Otherwise, the lintel should be reinforced by an additional timber (see Fig. 7).

In each case, the strengthening joint in the elements shall be made using iron strips with sufficient nails/screws to ensure the strength of the joint.

10.5 Adequate Configuration

Summarizing most of the recommendations contained in this standard, a configuration is shown in Fig. 8 which will, in general, be adequate for seismic areas including Zone V and IV. Additional seismic strengthening features are presented in 11.

11 SEISMIC STRENGTHENING OF BEARING WALL BUILDINGS

11.1 Collar Beam or Horizontal Band

Two horizontal continuous reinforcing and binding beams or bands should be placed, one coinciding with lintels of door and window openings, and the other just below the roof in all walls in seismic zones III, IV and V. Proper connection of the placed at right angles at the corners and junctions of walls should be ensured. Where the height of wall is not more than 25 m, the lintel band can be avoided, but the lintel should be connected to the roof band (see 11.2). The bands could be in the following forms:

a) Unfinished rough cut or sawn (70 x 150 mm in section) timber in single pieces provided diagonal members for bracing at corners (see Fig. 9a).

b) Unfinished rough cut or sawn (60 x 100 mm or 70 x 70 mm in section) timber two pieces in parallel with diagonal joints at corners and junctions of walls placed in parallel (see Fig. 9b).

1 — Light roof 2 — Light gable wall (noting or boarding) 3 — Rain protection overhang (about 500 mm) 4 — Stable plaster 5 — Plinth height for flood protection 6 — Stable foundation 7 — Good mortar 8 — Floor level 9 — Ground level 10 — Waterproof layer

(a) Building configuration. (b) Footing on firm soil. (c) Footing on soft soil

All dimensions in millimeters.
11.2 Pillasters and Buttresses

Where pillars or buttresses are used, as recommended earlier at corner or T-junctions, the collar beam should cover the buttresses as well, as shown in Fig. 10. Use of diagonal struts at corners will further stiffen the collar beam.

11.3 Vertical Reinforcement in Walls

In seismic zone V, mesh form of reinforcing is recommended. Here the whole walls are reinforced by a mesh of cane or bamboo as shown in Fig. 11 along with the collar beams which may in this case be made from cane or bamboo itself. The vertical cases must be tied to the horizontal ones as well as the collar beam at lintel and the roof beam at roof level. (see 11.1)

12 EARTHEN CONSTRUCTIONS WITH WOOD OR CANE STRUCTURES

12.1 The scheme of earthen construction using structural framework of wood or cane, as shown in Fig. 12, consists of vertical posts and horizontal blocking members of wood or large diameter cane or bamboo, the panels being filled with cane, bamboo or some kind of reed matting plastered over both sides with mud. The construction could be done in situ, building element-by-element or by using prefabricated panels.

12.2 For the satisfactory behaviour of this type of construction the following fundamental rules, given in 12.2.1 to 12.2.6, should be observed.

12.2.1 Good connections between the wood or cane elements, so as to ensure an integral behaviour of the structure. The connections are normally fixed with nails. Their number and dimensions should be enough but not excessive so as to split the elements. The connections can also be tied with wires, ropes, leather straps, etc.

12.2.2 Preservation of the wood or cane elements by coating the surface or painting with coal tar, especially in the part embedded in the soil, which should preferably be of foundation, which should preferably be of concrete, stone or bricks laid with cement, lime or cement mortar.

12.2.3 In houses built as a continuous system as those made with prefabricated panels, an upper ring beam should be placed to ensure the integral behaviour of all walls, and to distribute evenly the roof loading (see 11.1).

12.2.4 The panel filling material should consist of wood or cane mesh, over which a layer of mud and straw (1:1 by volume) is placed on each face in the form of plaster. Very often, the meshes are knitted themselves and around the structure.

12.2.5 The mud filling should be placed only after fixing the upper ring beam and the roof (after completing the nailing). This will avoid fissuring caused by the strokes of the nailing operation.

12.2.6 In the case of prefabricated panels, the frames could have economical sections 25 x 50 mm or 25 x 75 mm or larger. The connection between panels is made through nails, but the wood or cane knitted mesh over which the mud filling is placed may be fixed without the use of nails.
1 — Adobe 2 — Mud mortar 3 — Wooden band 4 — Diagonal brace
(a) Band with single timber and diagonal brace at corner (b) Band with two timbers in parallel

FIG. 9 WOODEN BAND IN WALLS AT LINTEL AND ROOF LEVELS

11.2 Pillasters and Buttresses

Where pillasters or buttresses are used, as

11.3 Vertical Reinforcement in Walls

In seismic zone V, mesh form of reinforcement is
1. Pillasters at wall junctions
2. Two parallel timbers
3. Wood blocking at about 500 mm
4. Diagonal brace
5. Integrating roof band with door/window panels

12.2 For the construction of the roof band on pillastered walls, as shown in Fig. 10. Use of diagonal struts at corners will further stiffen the collar beam. The collar beam should cover the buttresses as well, as shown in Fig. 10. Use of diagonal struts in Fig. 11 may in this case stiffen the collar beam element-by-element (see 11.1).
12.3 Bracing and Braced Frames

For achieving adequate seismic resistance in zones V and IV, it will be desirable to provide diagonal bracing members in the planes of walls as well as horizontally at the top level of walls. This can be done by using boards or batten nailed to the framing members at the ends and intermediate points of intersections, before nailing the panel headers and applying plaster to them (see Fig. 13).

Scheme for providing internal bracing systems in earthen houses, similar to the walls and plaster it, and other alternatives are explained in Annex A.

12.4 PLASTERING AND PAINTING

12.4.1.1 The purpose of plastering and painting is to give protection and durability to the walls and to provide a finish. The second and last layer is made with lime mud which when dried, should be rubbed with small, hard, rounded pebbles.

13.1 In wet areas, plastering should be done with water proofing mud plaster. To obtain this, the following procedure may be followed:

13.1.1 Cut-back water proofing should be prepared by mixing lime (lump size): 300 kg; water: 400 kg; and earthmud: 4 kg in the ratio 1:3:1. For 1.5 kg cut-back, 1 kg bitumen is added and poured into a container having 300 ml water. The bitumen is kept in constant stirring, till complete mixing. This mixture can now be mixed with 30 liters of rainwater to make it both, water repellent and fire resistant.

13.3 For improving water and fire resistance of earth roofs, the water proof plaster may be applied on top of surfaces of the thatch, 20 to 30 mm thick, and allowed to dry. It may then be protected with a wet mixture of cowdung and waterproof plaster in the ratio of 3:1, and allowed to dry again.

13.4 The exterior of walls after plastering and thatch roof after treatment, as explained in 13.3 may be vitrified painted using a water insulating paint or washed with water solutions of lime cement or gypsum.

ANNEX A

Clause 12.3

INTERNAL BRACING IN EARTHEN HOUSES

A-1 INTERNAL BRACING SYSTEM

A-1.1 Earthen houses are structurally very weak under lateral load, hence require special techniques to make them collapse proof in seismic intensities VIII and IX areas such as vertical tensional members as well as diagonal braces. A scheme of using internal braced frames in such houses is shown in Fig. 14. Calculations for single storied buildings with flat heavy flexible roofs (for example, wooden beams with clay topping) show that even the small bracing members, Group C in IS 882 : 1959, when suitably braced using nail joints will serve the purpose of holding the roof in place in case of the event that the walls give way partially. The frame will also restrain the walls from disintegrating completely.

A-1.2 In using the method described in A-1.1, the following systems can be adopted:

a) System A — The whole building may be framed as one piece and the external walls built keeping the wooden frame as the inner face of external walls and the internal walls built keeping the frame on the one of its faces (preferably on the bed room side). Such a frame will have the advantage of redundancy, and use of lesser number of columns. But the frame can be subjected to rotational stresses under the earthquake motions.

b) System B — Each room may be framed individually, thus the external walls will be of the frame only on both inner faces, the internal walls will have the frames on both sides, preventing the fall of the internal walls either way. This system will have the advantage of permitting any plan shape, without the problem of torsion of the frames and much greater safety of cross walls. It will, however, consume more timber since all frames on the inner walls will be doubled.

c) System C — In the third system, the frames of system B may be joined across walls of a stronger wooden building frame. Such a system will have the advantages of both A and B systems and can be adopted for the more important buildings such as those built for community services.

As a general guidance, system A may be adopted for new symmetrical plans and system B for general asymmetrical plans.

A.2 HOLDFASTS TO THE WALLS

The earthen walls may be kept no more than 40 mm thick. To improve their behaviour, steel holdfasts of Z-shape may be screwed to the wooden posts at least one for each truss, and be built into the cladding earthen wall.

A.3 OTHER ALTERNATIVES AND APPLICATIONS

A.3.1 As an alternative to wooden frames, steel pipe or angle iron frames of equal strength may be used.

A.3.2 The internal bracing system will also be appropriate for the seismic safety of random rubble or brick work in mud mortar construction.

A.3.3 Such frames could also be inserted in existing low strength masonry houses for retrofitting them against collapse in future earthquakes.
ANNEX B
(Prepared)

COMMITTEE COMPOSITION
Earthquake Engineering Sectional Committee, CED 59

Chairman
Mr. A. K. Agarwal
Secretary
Dr. R. K. Pathak
Reception
Indian Roads Congress, New Delhi
Science House, Electronics Ltd., New Delhi
National Geophysical Research Institute, Hyderabad
Department of Earthquake Engineering, University of Roorkee, Roorkee
Indian Meteorological Department, New Delhi
North Eastern Council, Shillong
Indian Society for Earthquake Technology, Roorkee
Central Water Commission (ERDO), New Delhi
Railway Board, Ministry of Railways
National Hydro-Electric Power Corporation Ltd., New Delhi
Central Water & Power Research Station, Pune
Department of Atomic Energy, Bombay
National Thermal Power Corporation Ltd., New Delhi
Tata Consulting Engineers, Bombay
National Buildings Organization, New Delhi
Central Building Research Institute, Roorkee
National Railways, Ministry of Transport, Department of Surface Transport (Roads) Wing A, New Delhi
Geological Survey of India, Calcutta
Irigration Department, Govt. of Maharashtra, Ninth Engineer India Ltd., New Delhi
Nuclear Power Corporation, Bombay
Engineer-In-Chief’s Branch, Army Headquarters, New Delhi
Structural Engineering Research Centre (SERC), Madras
Central Public Works Department, New Delhi

Inperson capacity (1-7.0): Designing Qualifications, New Delhi
Director General, N.S. (Qualifying Members)

Subcommittee
Mr. R. K. N. Seth
Director (Civil Project), BES

(Continued in Page 10)
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1969 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standards of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright should be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically, a standard along with amendments is reaffirmed when the review indicates that no changes are needed. If the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ensure that they are in possession of the latest amendment to any edition by referring to the latest issue of 'BIS Handbook' and 'Standards Monthly Additions'. Comments on this Indian Standard may be sent to BIS giving the following reference:

Doc. No. CED 59 (5269)

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amendment No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002

Regional Offices

<table>
<thead>
<tr>
<th>Regional Office</th>
<th>Address</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central, New Delhi</td>
<td>110002</td>
<td>331 01 31, 331 13 75</td>
</tr>
<tr>
<td>Regional Offices</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern</td>
<td>New Delhi</td>
<td>110002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>331 01 31, 331 13 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37 84 99, 37 85 61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37 86 26, 37 86 62</td>
</tr>
<tr>
<td>Northern</td>
<td>New Delhi</td>
<td>110002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>331 01 31, 331 13 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 38 32, 32 38 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53 20 84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>235 02 16, 235 04 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>235 13 19, 235 23 15</td>
</tr>
<tr>
<td>Western</td>
<td>New Delhi</td>
<td>110002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>331 01 31, 331 13 75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>632 92 55, 632 78 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>632 78 91, 632 78 92</td>
</tr>
</tbody>
</table>

Branches
AHMADABAD, BANGALORE, BHOPAL, BHUJANDHUR, COMBATORE, FARIDABAD, GHAZIABAD, GUVARAHATI, HYDERABAD, JAIPEER, KANPUR, LUCKNOW, PATNA, TEHRUVANANTHRAPURAM

Telegram: MANAKANANDHA

Couriers: New Delhi, Mumbai, Kolkata, Chennai, Calcutta

Established 1958

Printed by New India Printing Press, New Delhi, India.